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ABSTRACT The protein YfeX from Escherichia coli has been proposed to be essential for the process of iron removal from heme
by carrying out a dechelation of heme without cleavage of the porphyrin macrocycle. Since this proposed reaction is unique and
would represent the first instance of the biological dechelation of heme, we undertook to characterize YfeX. Our data reveal that
YfeX effectively decolorizes the dyes alizarin red and Cibacron blue F3GA and has peroxidase activity with pyrogallal but not
guiacol. YfeX oxidizes protoporphyrinogen to protoporphyrin in vitro. However, we were unable to detect any dechelation of
heme to free porphyrin with purified YfeX or in cellular extracts of E. coli overexpressing YfeX. Additionally, Vibrio fischeri, an
organism that can utilize heme as an iron source when grown under iron limitation, is able to grow with heme as the sole source
of iron when its YfeX homolog is absent. Plasmid-driven expression of YfeX in V. fischeri grown with heme did not result in ac-
cumulation of protoporphyrin. We propose that YfeX is a typical dye-decolorizing peroxidase (or DyP) and not a dechelatase.
The protoporphyrin reported to accumulate when YfeX is overexpressed in E. coli likely arises from the intracellular oxidation
of endogenously synthesized protoporphyrinogen and not from dechelation of exogenously supplied heme. Bioinformatic analy-
sis of bacterial YfeX homologs does not identify any connection with iron acquisition but does suggest links to anaerobic-
growth-related respiratory pathways. Additionally, some genes encoding homologs of YfeX have tight association with genes
encoding a bacterial cytoplasmic encapsulating protein.

IMPORTANCE Acquisition of iron from the host during infection is a limiting factor for growth and survival of pathogens. Host
heme is the major source of iron in infections, and pathogenic bacteria have evolved complex mechanisms to acquire heme and
abstract the iron from heme. Recently Létoffé et al. (Proc. Natl. Acad. Sci. U. S. A. 106:11719 –11724, 2009) reported that the pro-
tein YfeX from E. coli is able to dechelate heme to remove iron and leave an intact tetrapyrrole. This is totally unlike any other
described biological system for iron removal from heme and, thus, would represent a dramatically new feature with potentially
profound implications for our understanding of bacterial pathogenesis. Given that this reaction has no precedent in biological
systems, we characterized YfeX and a related protein. Our data clearly demonstrate that YfeX is not a dechelatase as reported but
is a peroxidase that oxidizes endogenous porphyrinogens to porphyrins.
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Dye-decolorizing peroxidases, or DyP-type peroxidases, are a
relatively recently recognized superfamily of heme-

containing peroxidases that are found in fungi and bacteria (1, 2).
They are structurally distinct from animal and plant peroxidases
as well as classical fungal peroxidases, such as LmnP and Lip (3–5).
DyPs are enzymatically unique in that they effectively oxidize
high-redox-potential anthraquinone dyes, thereby either decolor-
izing or altering the color of the dye. Because of this property,
DyPs are of industrial interest as biological decolorizers of syn-
thetic dyes. While the fungal DyPs characterized to date are extra-
cellular proteins (1), at least some bacterial DyPs are intracellular
(6–8). The crystal structures for the bacterial DyPs TyrA of She-
wanella oneidensis (8) and YcdB of Escherichia coli (6) have been

solved and the axial ligands for the heme iron identified. However,
the physiological role of these proteins in bacteria has not been
determined. DyPs are members of the larger CDE structural su-
perfamily that includes the hemoproteins chlorite dismutases (9)
and HemQ (10).

Recently, Létoffé et al. (11) reported that the E. coli proteins
YfeX and EfeB carry out the previously unobserved biological
dechelation of heme to release free iron and an intact protopor-
phyrin molecule. Both of these proteins appear by sequence ho-
mology to be DyP-type peroxidases, although this was not tested.
EfeB (YcdB) is one member of a tripartite iron transporter system
(YcdNOB) and is a periplasmic hemoprotein (12). It is iron (ferric
uptake regulator [Fur]) regulated and suggested to be a peroxidase
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involved in oxidation of ferrous iron during transport. There are
no experimental data available that suggest an involvement of this
system in heme uptake or utilization. The EfeB crystal structure
was recently solved (6), and while the authors of that study repeat
the suggestion that EfeB is involved in heme dechelation, they
present no data in support of the statement and cite only Létoffé et
al. Less is known about YfeX; however, Létoffé et al. proposed that
YfeX, a cytoplasmic protein, and EfeB, a periplasmic protein, “are
the sole proteins able to provide iron from exogenous heme
sources to E. coli” (11).

The suggestion that YfeX can dechelate heme to yield free iron
and an intact tetrapyrrole macrocycle would put YfeX in a unique
class unlike all other enzymes that have been definitively shown to
release iron from heme (13, 14). Although it has been claimed that
mammalian ferrochelatase can catalyze a dechelation reaction
(15), that reaction was reported to occur in vitro under non-
physiologically relevant conditions at acidic pH and elevated tem-
perature, conditions that are well outside the range where mam-
malian ferrochelatase is active or stable (16). Substantive evidence
for metazoan and bacterial heme oxygenases exists in the litera-
ture, and in all cases the end product is a cleaved, linear tetrapyr-
role, not an intact porphyrin.

Given the diversity of organisms that possess DyP-type pro-

teins, the identification of this class of proteins as heme dechela-
tases would have profound physiological and environmental im-
plications. Because of this and our interest in heme metabolism,
we undertook to examine in more detail the protein YfeX. The
data presented herein demonstrate that recombinant YfeX is a
typical DyP-type peroxidase and does not possess the catalytic
ability to dechelate iron from heme in vitro. In vivo experiments
with YfeX in E. coli and its homolog in Vibrio fischeri revealed no
evidence that YfeX either is involved in iron acquisition from
heme or generates porphyrin from exogenously supplied heme.

RESULTS
The YfeX is a dye-decolorizing peroxidase that also oxidizes
porphyrinogens. We first examined the properties of purified
YfeX as a potential dye-decolorizing peroxidase, because the YfeX
sequence is homologous to that of members of the DyP family of
peroxidases. Purified overexpressed YfeX has little bound heme
but is readily loaded with heme that binds with high affinity
(Fig. 1A). Heme-loaded YfeX exhibits typical peroxidase activi-
ties. It efficiently decolorizes alizarin red and Cibacron blue F3GA
(Fig. 1B and C) but not reactive red 120, reactive orange 14, reac-
tive green, or reactive brown 5, and it utilizes pyrogallol (Fig. 1D)
but not guiacol in a peroxidase assay. Heme-free, apo-YfeX had no

FIG 1 Biochemical and enzymatic characterization of YfeX. (A) UV/visible scan of heme-loaded purified YfeX, as described in the text. The heme Soret peak
has a maximum at 415 nm. The inset shows a sodium dodecyl sulfate-polyacrylamide gel that is overloaded with protein to demonstrate the purity of the YfeX
protein employed in these studies. (B) Alizarin red dye decolorization by YfeX. Details are in Materials and Methods. (C) Cibacron blue dye decolorization by
YfeX. (D) Pyrogallol oxidation by YfeX. Symbols (B, C, and D): solid circles, pH 5.5; open circles, pH 6.0; solid triangles, pH 6.5; open triangles, pH 7.0; and solid
squares, pH 7.5. (E) Protoporphyrinogen IX oxidation to protoporphyrin IX by YfeX. (F) Coproporphyrinogen III oxidation to coproporphyrin III by YfeX.
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peroxidase activity, and neither apo- nor holo-YfeX has catalase
activity. The pH optima for dye decolorizations are acidic, as has
been reported for extracellular fungal DyP-type peroxidases (1),
but the optimum for pyrogallol oxidation is approximately 7
(Fig. 1D). Interestingly, holo-YfeX effectively oxidized both pro-
toporphyrinogen IX and coproporphyrinogen III to their corre-
sponding porphyrins (Fig. 1E and F), not unlike some intracellu-
lar plant peroxidases (17). It was noted that both dye
decolorization and pyrogallol oxidation activity diminished with
time even with an excess of substrates present. The average turn-
over of the protein before loss of activity varied considerably be-
tween dyes and pyrogallol. These numbers (total mol dye oxidized
per mol enzyme) are 250 for alizarin red, 100 for Cibacron blue,
and approximately 200,000 for pyrogallol (Fig. 2A to C). We could
find no evidence that this loss of activity was accompanied by the
appearance of free porphyrin.

YfeX is not involved in biological iron removal from heme.
By following the published methods of Létoffé et al. (11), we were
unable to reproduce the in vitro dechelation reaction with either
meso- or protoheme as the substrate. We do not have an explana-
tion for this, but we do note that YfeX is expressed at high levels in
our system and is active as a peroxidase. As noted by Létoffé et al.
(11), no dechelatase activity is measurable with purified enzyme.
We also examined YfeX expression in V. fischeri, since it can utilize
heme as its sole source of iron (18) and possesses a homolog of
YfeX (VF_1898) but no homolog of EfeB. Additionally, as with
E. coli, V. fischeri has no annotated heme oxygenase. Thus, if the
proposal by Létoffé et al. is correct, V. fischeri VF_1898 should be
essential for obtaining iron from heme. However, knockout of
VF_1898 in V. fischeri had no impact on the ability of that organ-
ism to grow with heme as its sole iron source (Fig. 3), and wild-
type cells overexpressing VF_1898 did not display red color or
fluorescence characteristic of free porphyrin (Fig. 4). These data
demonstrate that the homolog of YfeX, VF_1898, is not essential
for iron removal from heme in V. fischeri and that when overex-
pressed in cells grown under iron-limiting conditions and supple-
mented with hemin, there is no evidence of a dechelation reaction.
Thus, in neither E. coli nor V. fischeri were we able to obtain any

data supporting the proposition that YfeX has dechelatase activity
or that it participates in vivo in iron acquisition from heme.

Given that YfeX oxidizes porphyrinogens to porphyrins, the
possibility exists that the fluorescence observed by Létoffé et al.
(11) could have resulted from the in vivo intracellular oxidation by
YfeX of endogenously produced porphyrinogens that would ac-
cumulate in the absence of available iron for ferrochelatase. To
assess this possibility, we examined E. coli possessing plasmid-
encoded human ferrochelatase (yfeX) or B. subtilis protoporphy-
rinogen oxidase (hemY). Since it has been suggested that E. coli
K-12 strains are deficient in heme uptake, the heme transporter
HasR was coexpressed with YfeX. Each of these was grown in LB
medium with appropriate antibiotic alone or with hemin or
5-aminolevulinic acid (ALA) supplementation. The rationale for

FIG 2 Suicide loss of activity of YfeX during catalysis. (A) Decolorization of alizarin red by YfeX with hydrogen peroxide results in the eventual loss of peroxidase
activity. Initially, 0.6 nmol of YfeX was added to start the reaction. At the indicated times (arrows), additional aliquots of 0.6 nmol YfeX were added to the
reaction. (B and C) Decolorization of Cibacron blue by YfeX (B) and oxidation of pyrogallol by YfeX and hydrogen peroxide (C). Details are identical to those
for panel A.

FIG 3 Growth kinetics of V. fischeri strains with hemin as an iron source.
Cultures of the wild type (circles), AKD910 (heme uptake mutant; triangles),
and the �yfeX mutant (squares) were grown overnight in LBS medium and
diluted 1:1,000 in mineral salts medium with 50 �M bipyridyl with (filled
symbols) or without (open symbols) hemin (50 �g/ml) supplementation. Two
hundred-microliter aliquots of the diluted cultures were incubated in a 96-well
plate at 28°C, and cell density was measured at 595 nm every 30 min using a
Bio-Tek Synergy 2 plate reader. Error bars show standard errors.
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these choices was that (i) with overexpressed ferrochelatase, there
should be free porphyrin only under conditions of endogenously
synthesized excess porphyrin; (ii) if YfeX is a dechelatase, one
should see fluorescence in the presence of hemin supplementa-
tion; and (iii) B. subtilis HemY has been shown to oxidize copro-
porphyrinogen and protoporphyrinogen to their corresponding
porphyrins in vivo (16, 19), so when they are overexpressed one
sees fluorescence from endogenously produced porphyrinogens
but not exogenously supplied hemin. Our data showed that with
overexpressed ferrochelatase, porphyrin fluorescence is seen only
with ALA supplementation (Fig. 4). Cells overexpressing YfeX
exhibit fluorescence on LB�ALA similar to what is seen with
HemY expression, minimal fluorescence on LB alone, and no flu-
orescence when supplemented with hemin. Cells overexpressing
HemY have some fluorescence on LB alone and high levels of
fluorescence when supplemented with ALA. V. fischeri grown un-
der similar conditions with and without the YfeX homolog ex-
pression vector had no fluorescence except when supplemented
with ALA. These data, along with the observation that knockout of
the YfeX homolog in V. fischeri resulted in cells with no detectable
phenotype, strongly suggest that YfeX has no role in cellular iron
acquisition from heme and does not function in vivo as a heme
dechelatase.

Bioinformatics data do not support a role for YfeX in deche-
lation of heme for iron acquisition. For three bacteria that pos-
sess YfeX or a homolog, E. coli K-12 (YfeX), S. oneidensis MR-1
(SO_0740, TyrA), and P. aeruginosa PAO1 (PA2765), there are

reasonable global expression profiling databases available. In all of
these organisms, YfeX homologs appear to be expressed under a
wide variety of conditions, albeit at different intensities. If YfeX is
involved in iron acquisition, it would be reasonable to expect that
it might be regulated by Fur. However, global iron-dependent
gene regulation has been studied in detail in E. coli (20, 21), V.
cholerae (22, 23), and P. aeruginosa (24), and notably, YfeX ho-
mologs in these organisms do not appear to be directly regulated
by iron availability, nor do they contain sequences corresponding
to Fur or IS boxes in their upstream regulatory regions (20, 21,
24). This appears contrary to what would be expected for a gene
with the predicted physiological function of retrieving iron from
heme (11).

DISCUSSION

Létoffé et al. (11) proposed that YfeX and EfeB are responsible for
iron supply via dechelation of exogenously supplied heme in
E. coli K-12 grown under iron starvation but in the presence of
heme. Interestingly, their original identification of YfeX and EfeB
was done by an expression plasmid library screen in wild-type cells
grown on iron-replete rich medium without exogenous hemin.
Under these conditions, they identified colonies that fluoresced
red from free protoporphyrin. They suggested that this occurred
from dechelation of endogenously produced heme, a proposition
that would require the existence of an energetically futile cycle in
these cells. The proposal that a bacterial heme dechelatase exists to
provide iron while generating free protoporphyrin is unique and

FIG 4 Impact of YfeX on porphyrin accumulation during growth of E. coli and V. fischeri. E. coli strains containing plasmid constructs as described in the
Materials and Methods were grown on LB plates with or without 50 �g/ml hemin or 50 �g/ml ALA. V. fischeri was grown on LBS plates with 2 mM IPTG with
or without 50 �g/ml hemin and 100 �M bipyridyl or 50 �g/ml ALA. Plates were incubated at 37°C (E. coli) and 28°C (V. fischeri) for 3 days and imaged using
bright-field microscopy (F6.6, 1/60-s exposure) (left columns) and a red/green fluorescence filter (F6.6, 1/2-s exposure) (right columns).
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raises significant questions, the most important of which may be
the fate of the highly reactive porphyrin that would be generated as
a by-product. In organisms in which free protoporphyrin accu-
mulates, such as the �hemH mutant of E. coli (25), plants treated
with diphenyl ether herbicides (26), or animals with erythropoi-
etic protoporphyria (27), one finds that the accumulation of free
protoporphyrin in a cell has dire consequences. Indeed, in the field
of cancer, photodynamic therapy is based upon the lethal effects of
free cellular porphyrins under illumination (28). Given that there
are no known biological mechanisms for the destruction of free
porphyrins, the only possible fate would be either iron reincorpo-
ration via ferrochelatase, in a futile cycle, or excretion of porphy-
rin into the surrounding milieu. This last process has not been
observed in bacteria and, if it does exist, it would be inadequate to
eliminate intracellular protoporphyrin that accumulates when
bacterial cultures are supplemented with ALA, the first committed
intermediate in the biosynthesis of heme. In S. cerevisiae lacking
the gene for ferrochelatase (hem15), protoporphyrin accumulates
in the cytosol, and when the cells are illuminated, the porphyrin
has been shown to be cytotoxic (29), supporting the observation
that accumulation of protoporphyrin is undesirable. In mice that
have a homozygous deletion of IRP2, the primary iron-regulatory
protein in the erythron, lack of iron leads to accumulation of
protoporphyrin (30, 31), further supporting the conclusion that
in the absence of iron the demand for heme leads to protoporphy-
rin accumulation.

As a first step, we sought to biochemically characterize the
dechelatase reaction, and in the present study, we focused on
YfeX. However, we were unable to detect any dechelatase activity
with either the purified enzyme or crude cell extracts of YfeX-
overproducing cells, even though the Tac promoter-driven ex-
pression of YfeX was robust in the E. coli K-12 strain we employed,
JM109. Additionally, we saw no fluorescence of cells expressing
YfeX when they were grown with exogenously supplied heme.
When YfeX-expressing JM109 cultures were grown with added
ALA, there was visible fluorescing free porphyrin, but this was in
an amount similar to what one finds when endogenously synthe-
sized porphyrinogen is oxidized. The coexpression of YfeX with
the heme transporter HasR gave results identical to those obtained
with YfeX alone, showing that it was not a limitation of heme
uptake that resulted in lack of observable dechelatase activity in
vivo. Since V. fischeri possesses the ability to take up heme, coex-
pression of HasR and YfeX was not necessary.

Overall, our data demonstrate that YfeX is a typical DyP-type
heme-containing peroxidase. As with other proteins of this gen-
eral class, some heme destruction occurs via a currently unde-
scribed suicide reaction, but this reaction does not generate any
detectable free porphyrin. Significantly, we demonstrated that
YfeX efficiently catalyzes the oxidation of both coproporphyrino-
gen III and protoporphyrinogen IX into the corresponding free
porphyrins. Given that Létoffé et al. (11) never reported the pro-
duction of porphyrin in cultures where iron was limited or pro-
vided exogenously via hemin, it seems likely that the fluorescence
observed originated from YfeX-mediated oxidation of intracellu-
lar porphyrinogen that was diverted from the formation of heme
rather than dechelation of newly synthesized heme.

In addition to experimental approaches with purified YfeX and
bacterial cell lines either lacking or overexpressing YfeX, we
sought to determine if YfeX and homologs in other bacteria pos-
sessed a genetic or functional genomic context that might reveal

the role this family of proteins plays in bacteria. It is noteworthy
that proteins from a phylogenetic branch of the DyP superfamily
closely related to yet distinct from YfeX, Enc_DyP, often occur in
the same species as YfeX (e.g., Pseudomonas fluorescens, Burkhold-
eria cenocepacia, Proteus mirabilis, etc). The Enc_DyP group of
orthologous proteins is notable for its association with encapsulin,
a protein observed to form icosahedral shells that function as a
minimal bacterial intracellular compartment (32). This associa-
tion is based on both genomic and functional observations. In
over half of the organisms where members of the Enc_DyP sub-
group occur, the corresponding gene is colocalized and likely
forms an operon with the encapsulin-encoding gene (e.g.,
Rv0798c and Rv0799c in M. tuberculosis H37Rv). Furthermore,
the encapsulation of an Enc_DyP protein in such nanocompart-
ments has been demonstrated in Brevibacterium linens (32). We
propose that YfeX and Enc_DyP perform distinct functions. This
conjecture is supported by the fact that the two subfamilies may
co-occur in the same microorganisms where functional redun-
dancy is usually the exception rather than the rule, and by the
observation that the Shewanella YfeX-like protein assembles into a
dimer, while Enc_DyP from Bacteroides thetaiotaomicron is a hex-
amer (trimer of dimers) (33). Finally, the need for compartmen-
talization suggests that a substrate(s) or product(s) of the
Enc_DyP branch is likely toxic or unstable, which apparently is
not the case for the substrate(s) of the YfeX-type enzymes.

Based upon an analysis of the large collection of microarray
data in the M3D database, in S. oneidensis and E. coli, the most
significant induction of the YfeX orthologs is observed during
logarithmic growth under anaerobic conditions. Virtually no sig-
nal is observed in stationary phase, and there is very low expres-
sion under aerobic conditions. Furthermore, in S. oneidensis, a
specific increase in expression of SO_0740 is observed when fu-
marate is used as the terminal electron acceptor, compared to
conditions of nitrate or trimethylamine-N-oxide (TMAO) anaer-
obic respiration. Interestingly, the list of the top ~50 genes corre-
lated in expression with SO_0740 contains genes encoding a sol-
uble periplasmic fumarate reductase FccA, various multiheme
cytochromes, and components of the c-type cytochrome biogen-
esis machinery and quinone biosynthesis pathway, as well as sev-
eral heme biosynthetic enzymes. Given that biosynthesis and as-
sembly of these respiratory chain components in Shewanella in
response to fumarate supplementation likely also requires heme
and other cofactors (e.g., Fe-S centers, FAD for fumarate dehydro-
genase, Mo for formate dehydrogenase, and Ni for hydrogenase),
we suggest that the in vivo function of the YfeX ortholog in She-
wanella could be associated with synthesis or assembly of some
component(s) of the respiratory chain synthesized under anaero-
bic conditions. This association may involve the maturation of the
c-type cytochromes (34, 35), given that the YfeX family is coex-
pressed with system I cytochrome c maturation components in
both S. oneidensis (with the CcmH and CcmF subunits of cyto-
chrome c heme lyase) and P. aeruginosa (with CcmD, as well as
with multiple c-type cytochromes [PA5490, PA5300, and
PA0541]), and that within the beta- and gammaproteobacteria,
the YfeX-type DyP proteins never occur in organisms that lack
genes associated with systems I and II of cytochrome c maturation
(e.g., in Francisella tularensis, Bdellovibrio bacteriovorus, Coxiella
burnetii, and all sequenced species of the genera Campylo-
bacter, Helicobacter, “Candidatus Blochmannia,” Photorhabdus,
and Buchnera) (see the SEED database subsystem “Biogenesis of
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c-type cytochromes” [http://theseed.uchicago.edu/FIG/seedviewer
.cgi?page�Subsystems&subsystem�Biogenesis_of_c-type_
cytochromes]).

Alternatively, YfeX could be required for the turnover or deg-
radation of the respiratory complexes that are being replaced and
disassembled during the switch from aerobic growth to anaerobi-
osis. Gene expression data available from P. aeruginosa PAO1 and
E. coli do not contradict this proposal. The fact that in E. coli, YfeX
has been reported to be a member of the sigma E (�E) regulon (36,
37) is in agreement with this hypothesis.

In the case of V. fischeri, recent work has shown that the
VF_1220-to-VF_1228 gene cluster is required for using hemin as
an iron source under iron-limiting conditions (18). This heme
uptake/utilization gene cluster is regulated in response to iron
levels in a Fur-dependent manner. If YfeX were involved in recov-
ering iron from heme in V. fischeri, one might expect its regulation
to be coordinated with the heme uptake and utilization gene clus-
ter required for growth on hemin as an iron source. However, the
yfeX gene in V. fischeri is the last gene in a putative three-gene
operon with genes encoding hypothetical proteins, and a virtual
footprint analysis (http://www.prodoric.de/vfp/) failed to identify
any putative Fur binding sites upstream of the yfeX gene or up-
stream of the first gene in the putative operon (VF_1900). This
analysis did reveal a putative binding site for the oxygen-sensitive
FNR (fumarate/nitrate reduction) transcriptional regulator up-
stream of VF_1900. Interestingly, the yfeX containing putative
operon (VF_1898 – to VF_1900) is located near an operon encod-
ing the components of the nitrate reductase complex (VF_1901 to
VF_1907). These findings lend strength to our hypothesis that the
function of YfeX in vivo may indeed be linked to maintenance of
anaerobic respiratory chain components.

In conclusion, we propose that YfeX is a heme-containing per-
oxidase typical of the DyP type. Its intracellular role remains to be
identified, but the earlier suggestion that it possesses heme deche-
latase activity is not supported by either in vitro or in vivo data, nor
does it appear to be consistent with our bioinformatic analyses.
Finally, it should be noted that the ability of the V. fischeri yfeX
mutant to grow on heme as an iron source strongly suggests that
another protein(s) exists to catalyze the removal of iron from ex-
ogenously supplied heme and that the proposal of Létoffé et al.
that YfeX and EfeB “are the sole proteins able to provide iron from
exogenous heme sources” is not justified (11). This point gathers
additional support from the fact that V. fischeri and E. coli possess
homologs of the hutWXZ operon, which has been shown to com-
plement heme oxygenase mutants of Corynebacterium diphtheriae
(38). We further propose that the accumulation of protoporphy-
rin that was reported to occur in E. coli overproducing YfeX re-
sulted not from dechelation of exogenously supplied heme but
from YfeX-mediated oxidation of endogenously synthesized por-
phyrinogens. This proposal is consistent with the observation that
overexpression of B. subtilis HemY, which catalyzes the oxidation
of both coproporphyrinogen and protoporphyrinogen, in E. coli
results in the accumulation of porphyrin from porphyrinogens.
Additionally, it is known that under conditions in which intracel-
lular porphyrinogen concentrations are increased in plants, cyto-
plasmic peroxidases oxidize porphyrinogens to porphyrins (17).
We propose that a similar event occurs in E. coli when the perox-
idase YfeX is as abundant as it is in overexpressing cells.

MATERIALS AND METHODS
YfeX purification. The gene encoding YfeX was obtained by PCR
amplification of genomic DNA from E. coli JM109. The open
reading frame was cloned into pTrcHisA (Invitrogen) to yield a
six-histidine amino-terminal tag fusion. The sequence of the yfeX
gene in the plasmid was confirmed by the Georgia Genomics Fa-
cility at the University of Georgia. Expression, isolation, and pu-
rification of YfeX using HisPur cobalt resin (Thermo Scientific)
was as described previously for ferrochelatase (39). One additional
step was column chromatography employing an AKTA Prime
FPLC system with a HiPrep 16/60 Sephacryl S-300 column (GE
Healthcare), where the buffer was 100 mM Tris-HCl (pH 7.5),
100 mM KCl. The fractions containing YfeX were combined and
concentrated by centrifugation with an Amicon Ultra centrifugal
filter (Millipore). The protein concentration was determined
spectrophotometrically (�mM � 327 at 280 nm).

Strain and plasmid construction. The Serratia marcescens
hasR (heme transporter) gene was amplified by PCR of genomic
DNA and cloned into the NheI/HindIII sites of pTrcHisA (Invit-
rogen), which had been modified to contain the kanamycin resis-
tance gene. The resulting plasmid was transformed into E. coli
JM109 along with the previously described yfeX expression plas-
mid and grown on plates containing LB plus ampicillin (100 �g/
ml) and kanamycin (30 �g/ml), LB plus ampicillin (100 �g/ml),
kanamycin (30 �g/ml), and heme (50 �g/ml), and LB plus ampi-
cillin (100 �g/ml), kanamycin (30 �g/ml), and ALA (50 �g/ml).

A V. fischeri mutant (strain AKD915) with an in-frame deletion
of the putative yfeX gene (VF_1898) was constructed in the wild-
type parent V. fischeri ES114 using allelic exchange (40). Briefly,
approximately 1.6 kb of DNA upstream of VF_1898 was amplified
by PCR and fused to an approximately 1.6-kb DNA fragment
downstream of VF_1898 using an engineered ClaI 6-bp restriction
site added to the PCR primers. Additional codons were included
in order to design specific primers with reasonable G�C content,
resulting in inclusion of the first three codons of VF_1898.

To construct plasmid pAS101, which has yfeX controlled by an
IPTG (isopropyl-�-D-thiogalactopyranoside)-inducible pro-
moter, the yfeX homolog (VF_1898) was PCR amplified and di-
rectionally cloned into the KpnI and NheI sites of the IPTG-
inducible expression vector pAKD601B (41), which is derived
from stable shuttle vectors based on native V. fischeri plasmid
pES213 (32, 42). The sequence of yfeX in the vector was confirmed
at the University of Michigan DNA Sequencing Core facility.

Assays. For all dye-decolorizing assays, stock solutions of each
dye were prepared in buffers employed in the assays and diluted to
give an optical density (OD) reading of approximately 1.0 at the
wavelength of maximum absorbance, which was determined ex-
perimentally for each dye and buffer system. Dye decolorization
assays were run in 50 mM HEPES buffers prepared at pHs of 5.5,
6.0, 6.5, 7.0, 7.5, and 8.0. Initial assays demonstrated that YfeX
could decolorize alizarin red and Cibacron blue but not reactive
brown 5, reactive red 120, reactive orange 14, or reactive green 10
(Procion green). The final assay mixture contained 0.03% H2O2,
0.2 mM Cibacron blue, or 0.45 mM alizarin red as well as 0.6 �M
YfeX in 50 mM HEPES. Repetitive scans were run between 400
and 700 nM at room temperature. For pH optimum determina-
tions for pyrogallol, 50 mM sodium phosphate buffers were pre-
pared at pHs of 6.0, 6.5, 7.0, and 7.5. Each assay mixture contained
1% pyrogallol, 0.06% H2O2, 0.1 �M YfeX, and 50 mM phosphate
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buffer. All assays were repeated using 0.3% H2O2 (final concen-
tration) and yielded similar results.

For porphyrinogen oxidation assays, coproporphyrinogen III
and protoporphyrinogen IX were freshly prepared with sodium
amalgam as previously described (43). Assays were as described
for the dyes, except that coproporphyrinogen oxidation was mon-
itored at 370 nm and protoporphyrinogen oxidation was moni-
tored at 357 nm. In assays where Bacillus subtilis HemY (44) was
substituted for YfeX, the concentration of HemY was approxi-
mately 1 nM and no peroxide was present.

To assay for heme dechelatase activity in crude extracts of
YfeX-expressing cells, the basic assay described previously was
employed (11). Three 1.5-ml samples were added to microcentri-
fuge tubes. To one tube no heme was added, to a second 50 �M
heme (1 mM stock in dimethyl sulfoxide [DMSO]) was added,
and to a third 50 �M mesoheme (1 mM stock in DMSO) was
added. At time points of 0, 10, 20, 30, and 60 min, 250 �l was
collected, acidified, and solvent extracted with ethyl acetate-acetic
acid, 4:1 (vol/vol). Solvent-extracted samples were dried and por-
phyrin profiles analyzed as previously described (45).

To assay the ability of V. fischeri strains to grow on hemin as a
sole iron source, cultures of the wild type and the �yfeX mutant
were grown in LBS medium (46) overnight. These cultures were
diluted 1:1,000 into mineral salts medium (18) without an iron
source and supplemented with 50 �M 2,2=-bipyridyl chelator
(Sigma, St. Louis, MO), with or without 50 �g ml�1 hemin
(Sigma). The minimal medium cultures were grown in 200-�l
volumes in a 96-well Falcon polystyrene plate (Becton Dickinson,
Franklin Lakes, NJ) at 28°C for 24 to 30 h. Cell density was deter-
mined by measuring the absorbance at 595 nm with a Bio-Tek
Synergy 2 plate reader every 30 min for the duration of the exper-
iment. The assay was performed three times with biological dupli-
cates, and results from a representative experiment with optical
density values normalized to a 1-cm path length are shown.

To observe porphyrin accumulation in E. coli JM109, cells ex-
pressing yfeX, hasR plus yfeX, B. subtilis hemY, or human ferroche-
latase were grown on LB alone or with either 50 �g ml�1 hemin or
50 �g ml�1 5-aminolevulinic acid (ALA) (Sigma). To observe
porphyrin accumulation in V. fischeri, wild-type cells with or
without the yfeX expression vector (pAS101) were grown on LBS
plates with 2 mM isopropyl �-D-1-thiogalactopyranoside (IPTG),
(Sigma) supplemented with either 100 �M 2,2=-bipyridyl chelator
and 50 �g ml�1 hemin or 50 �g ml�1 ALA. Plates were incubated
at 28°C for 3 days, and individual colonies were imaged for por-
phyrin accumulation using a Nikon (Melville, NY) Eclipse E600
epifluorescence microscope with a Nikon red/green dual color
filter cube (51004v2; fluorescein isothiocyanate/tetramethyl rho-
damine isothiocyanate FITC/TRITC) and a Nikon Coolpix 5000
camera. All images were taken using a 10� objective and a 1/60-s
exposure for light images and 1/2-s exposure for fluorescent im-
ages.

Bioinformatics. The SEED database and its tools were used as
the primary comparative genomics platform in this study (47).
Functional genomics data, namely, predicted or experimentally
determined regulation patterns of YfeX orthologs in several model
microorganisms, were explored to determine the functional ex-
pression context. For this, the following global expression profil-
ing databases were employed: (i) MicrobesOnline at http://www
.microbesonline.org/, (ii) M3D at http://m3d.bu.edu/, and (iii)
SEED at http://www.theseed.org. Additional online resources on

gene regulation employed were RegulonDB (http://regulondb.ccg
.unam.mx/index.jsp) and RegPrecise (http://regprecise.lbl.gov/).
Sufficient data on the regulation (predicted or perceived) of YfeX
homologs are available for: Escherichia coli K-12 (YfeX), She-
wanella oneidensis MR-1 (SO_0740), and Pseudomonas aeruginosa
PAO1 (PA2765). Data available online for Vibrio fischeri ES114
were insufficient to resolve detailed expression correlations of the
YfeX homolog VF_1898 with other genes.

The DyP family in the Pfam database (48) currently includes
1,094 sequences in 760 bacterial and fungal species. These consti-
tute a divergent superfamily that can be partitioned into dis-
tinct branches of a phylogenetic tree. A neighbor-joining tree
analysis (49) in the SEED database of the YfeX branch of the
DyP superfamily includes 192 proteins that occur in 185 bac-
terial species of beta- and gammaproteobacteria out of 916 bacte-
rial and archaeal organisms examined. These share end-to-end
homology, with an E value of e�40 or better, with the E. coli YfeX
protein and are likely isofunctional [see the encoded subsystem
“Predicted dye-decolorizing peroxidases (DyP) of YfeX-like sub-
group” http://theseed.uchicago.edu/FIG/seedviewer.cgi?page�
Subsystems&subsystem�Predicted_dye-decolorizing_peroxidases_
(DyP)_of_YfeX-like_Subgroup].
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